1. Li F, Li C, Wang M, Webb GI, Zhang Y, Whisstock JC, et al. Glyco-Mine: a machine learning-based approach for predicting N-, C- and O-linked glycosylation in the human proteome. Bioinformatics 2015;31:1411-1419.
2. Flesch FM, Gadella BM. Dynamics of the mammalian sperm plasma membrane in the process of fertilization. Biochim Biophys Acta 2000;1469:197-235.
4. Nomikos M, Swann K, Lai FA. Starting a new life: sperm PLC-zeta mobilizes the Ca2+ signal that induces egg activation and embryo development: an essential phospholipase C with implications for male infertility. Bioessays 2012;34:126-134.
6. Liu F, Wang H, Li J. An integrated bioinformatics analysis of mouse testis protein profiles with new understanding. BMB Rep 2011;44:347-351.
8. Feugang JM, Rodriguez-Osorio N, Kaya A, Wang H, Page G, Ostermeier GC, et al. Transcriptome analysis of bull spermatozoa: implications for male fertility. Reprod Biomed Online 2010;21:312-324.
9. Garcia-Herrero S, Garrido N, Martinez-Conejero JA, Remohi J, Pellicer A, Meseguer M. Differential transcriptomic profile in spermatozoa achieving pregnancy or not via ICSI. Reprod Biomed Online 2011;22:25-36.
11. SphinGOMAP [Internet]. Atlanta: Georgia Institute of Technology; c2004-2007. cited 2015 Sep 24. Available from:
www.sphingomap.org
12. Agarwal A, Durairajanayagam D, Halabi J, Peng J, Vazquez-Levin M. Proteomics, oxidative stress and male infertility. Reprod Biomed Online 2014;29:32-58.
15. Boue F, Blais J, Sullivan R. Surface localization of P34H an epididymal protein, during maturation, capacitation, and acrosome reaction of human spermatozoa. Biol Reprod 1996;54:1009-1017.
16. Lasserre A, Gonzalez-Echeverria F, Moules C, Tezon JG, Miranda PV, Vazquez-Levin MH. Identification of human sperm proteins involved in the interaction with homologous zona pellucida. Fertil Steril 2003;79(Suppl 3): 1606-1615.
17. Myles DG, Hyatt H, Primakoff P. Binding of both acrosome-intact and acrosome-reacted guinea pig sperm to the zona pellucida during in vitro fertilization. Dev Biol 1987;121:559-567.
19. Gupta R, Brunak S. Prediction of glycosylation across the human proteome and the correlation to protein function. Pac Symp Biocomput 2002;310-322.
21. Higgins E. Carbohydrate analysis throughout the development of a protein therapeutic. Glycoconj J 2010;27:211-225.
22. Kobata A. Structures and functions of the sugar chains of glycoproteins. Eur J Biochem 1992;209:483-501.
23. Benoff S. Carbohydrates and fertilization: an overview. Mol Hum Reprod 1997;3:599-637.
24. Lis H, Sharon N. Protein glycosylation. In: Christen P, Hofmann E, editors. EJB reviews 1993. Berlin: Springer Berlin Heidelberg; 1994. p. 173-199.
25. Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease. Cell 2006;126:855-867.
29. Wang G, Wu Y, Zhou T, Guo Y, Zheng B, Wang J, et al. Mapping of the N-linked glycoproteome of human spermatozoa. J Proteome Res 2013;12:5750-5759.
30. Tollner TL, Yudin AI, Treece CA, Overstreet JW, Cherr GN. Macaque sperm coating protein DEFB126 facilitates sperm penetration of cervical mucus. Hum Reprod 2008;23:2523-2534.
31. Ozerlat I. Male factor infertility: mutation of sperm defensin causes subfertility. Nat Rev Urol 2011;8:474.
33. Bahat A, Eisenbach M. Human sperm thermotaxis is mediated by phospholipase C and inositol trisphosphate receptor Ca2+ channel. Biol Reprod 2010;82:606-616.
34. Baxendale RW, Fraser LR. Immunolocalization of multiple Galpha subunits in mammalian spermatozoa and additional evidence for Galphas. Mol Reprod Dev 2003;65:104-113.
38. Bray C, Son JH, Kumar P, Meizel S. Mice deficient in CHRNA7, a subunit of the nicotinic acetylcholine receptor, produce sperm with impaired motility. Biol Reprod 2005;73:807-814.
39. Krege JH, John SW, Langenbach LL, Hodgin JB, Hagaman JR, Bachman ES, et al. Male-female differences in fertility and blood pressure in ACE-deficient mice. Nature 1995;375:146-148.
40. Ikawa M, Tokuhiro K, Yamaguchi R, Benham AM, Tamura T, Wada I, et al. Calsperin is a testis-specific chaperone required for sperm fertility. J Biol Chem 2011;286:5639-5646.
41. Cho C, Bunch DO, Faure JE, Goulding EH, Eddy EM, Primakoff P, et al. Fertilization defects in sperm from mice lacking fertilin beta. Science 1998;281:1857-1859.
43. Shen C, Kuang Y, Liu J, Feng J, Chen X, Wu W, et al. Prss37 is required for male fertility in the mouse. Biol Reprod 2013;88:123.
45. Fujihara Y, Okabe M, Ikawa M. GPI-anchored protein complex, LY6K/TEX101, is required for sperm migration into the oviduct and male fertility in mice. Biol Reprod 2014;90:60.
46. Zigo M, Jonakova V, Sulc M, Manaskova-Postlerova P. Characterization of sperm surface protein patterns of ejaculated and capacitated boar sperm, with the detection of ZP binding candidates. Int J Biol Macromol 2013;61:322-328.
47. Zhuang D, Qiao Y, Zhang X, Miao S, Koide SS, Wang L. YWK-II protein/APLP2 in mouse gametes: potential role in fertilization. Mol Reprod Dev 2006;73:61-67.
49. Rubinstein E, Ziyyat A, Wolf JP, Le Naour F, Boucheix C. The molecular players of sperm-egg fusion in mammals. Semin Cell Dev Biol 2006;17:254-263.
50. Koyama K, Ito K, Hasegawa A. Role of male reproductive tract CD52 (mrt-CD52) in reproduction. Soc Reprod Fertil Suppl 2007;63:103-110.
51. Lum L, Blobel CP. Evidence for distinct serine protease activities with a potential role in processing the sperm protein fertilin. Dev Biol 1997;191:131-145.
52. Wright GJ, Bianchi E. The challenges involved in elucidating the molecular basis of sperm-egg recognition in mammals and approaches to overcome them. Cell Tissue Res 2015;7 30 [Epub].
53. Caballero J, Frenette G, D'Amours O, Belleannee C, Lacroix-Pepin N, Robert C, et al. Bovine sperm raft membrane associated Glioma Pathogenesis-Related 1-like protein 1 (GliPr1L1) is modified during the epididymal transit and is potentially involved in sperm binding to the zona pellucida. J Cell Physiol 2012;227:3876-3886.
55. Asquith KL, Harman AJ, McLaughlin EA, Nixon B, Aitken RJ. Localization and significance of molecular chaperones, heat shock protein 1, and tumor rejection antigen gp96 in the male reproductive tract and during capacitation and acrosome reaction. Biol Reprod 2005;72:328-337.
56. Mitchell LA, Nixon B, Aitken RJ. Analysis of chaperone proteins associated with human spermatozoa during capacitation. Mol Hum Reprod 2007;13:605-613.
57. Wolf DE, McKinnon CA, Leyton L, Loveland KL, Saling PM. Protein dynamics in sperm membranes: implications for sperm function during gamete interaction. Mol Reprod Dev 1992;33:228-234.
58. Primakoff P, Woolman-Gamer L, Tung KS, Myles DG. Reversible contraceptive effect of PH-20 immunization in male guinea pigs. Biol Reprod 1997;56:1142-1146.
59. McLeskey SB, Dowds C, Carballada R, White RR, Saling PM. Molecules involved in mammalian sperm-egg interaction. Int Rev Cytol 1998;177:57-113.
60. Podlaha O, Webb DM, Zhang J. Accelerated evolution and loss of a domain of the sperm-egg-binding protein SED1 in ancestral primates. Mol Biol Evol 2006;23:1828-1831.
62. Chau KM, Cornwall GA. Reduced fertility in vitro in mice lacking the cystatin CRES (cystatin-related epididymal spermatogenic): rescue by exposure of spermatozoa to dibutyryl cAMP and isobutylmethylxanthine. Biol Reprod 2011;84:140-152.
63. Kimura M, Kim E, Kang W, Yamashita M, Saigo M, Yamazaki T, et al. Functional roles of mouse sperm hyaluronidases, HYAL5 and SPAM1, in fertilization. Biol Reprod 2009;81:939-947.
64. Reitinger S, Laschober GT, Fehrer C, Greiderer B, Lepperdinger G. Mouse testicular hyaluronidase-like proteins SPAM1 and HYAL5 but not HYALP1 degrade hyaluronan. Biochem J 2007;401:79-85.
65. Richardson R, Nikolajczyk B, Beavers J, Widgren E, O'Rand M. Zona pelludica binding proteins of spermatozoa: mouse anti-RSA cross-reactive proteins. In: Baccetti B, editor. Comparative spermatology 20 years after. New York: Raven Press; 1991. p. 587-591.
66. Meizel S, Son JH. Studies of sperm from mutant mice suggesting that two neurotransmitter receptors are important to the zona pellucida-initiated acrosome reaction. Mol Reprod Dev 2005;72:250-258.
67. Yamashita M, Honda A, Ogura A, Kashiwabara S, Fukami K, Baba T. Reduced fertility of mouse epididymal sperm lacking Prss21/Tesp5 is rescued by sperm exposure to uterine microenvironment. Genes Cells 2008;13:1001-1013.
68. Livera G, Xie F, Garcia MA, Jaiswal B, Chen J, Law E, et al. Inactivation of the mouse adenylyl cyclase 3 gene disrupts male fertility and spermatozoon function? Mol Endocrinol 2005;19:1277-1290.
69. Saxena DK, Toshimori K. Molecular modifications of MC31/CE9, a sperm surface molecule, during sperm capacitation and the acrosome reaction in the rat: is MC31/CE9 required for fertilization? Biol Reprod 2004;70:993-1000.
70. Kim KS, Cha MC, Gerton GL. Mouse sperm protein sp56 is a component of the acrosomal matrix. Biol Reprod 2001;64:36-43.
72. Yamatoya K, Yoshida K, Ito C, Maekawa M, Yanagida M, Takamori K, et al. Equatorin: identification and characterization of the epitope of the MN9 antibody in the mouse. Biol Reprod 2009;81:889-897.
73. Zini A, Fahmy N, Belzile E, Ciampi A, Al-Hathal N, Kotb A. Antisperm antibodies are not associated with pregnancy rates after IVF and ICSI: systematic review and meta-analysis. Hum Reprod 2011;26:1288-1295.
74. Barroso G, Valdespin C, Vega E, Kershenovich R, Avila R, Avendano C, et al. Developmental sperm contributions: fertilization and beyond. Fertil Steril 2009;92:835-848.
76. Cooper TG. Interactions between epididymal secretions and spermatozoa. J Reprod Fertil Suppl 1998;53:119-136.
77. Jones R. Sperm survival versus degradation in the Mammalian epididymis: a hypothesis. Biol Reprod 2004;71:1405-1411.
78. Tulsiani DR. Glycan-modifying enzymes in luminal fluid of the mammalian epididymis: an overview of their potential role in sperm maturation. Mol Cell Endocrinol 2006;250:58-65.
79. Srivastav A, Singh B, Chandra A, Jamal F, Khan MY, Chowdhury SR. Partial characterization, sperm association and significance of N- and O-linked glycoproteins in epididymal fluid of rhesus monkeys (Macaca mulatta). Reproduction 2004;127:343-357.
80. Lassalle B, Testart J. Human zona pellucida recognition associated with removal of sialic acid from human sperm surface. J Reprod Fertil 1994;101:703-711.
81. Chandra A, Srinivasan KR, Jamal F, Mehrotra PK, Singh RL, Srivastav A. Post-translational modifications in glycosylation status during epididymal passage and significance in fertility of a 33 kDa glycoprotein (MEF3) of rhesus monkey (Macaca mulatta). Reproduction 2008;135:761-770.
82. Morin G, Lalancette C, Sullivan R, Leclerc P. Identification of the bull sperm p80 protein as a PH-20 ortholog and its modification during the epididymal transit. Mol Reprod Dev 2005;71:523-534.
83. Li MW, Yudin AI, Robertson KR, Cherr GN, Overstreet JW. Importance of glycosylation and disulfide bonds in hyaluronidase activity of macaque sperm surface PH-20. J Androl 2002;23:211-219.
84. Kuo CW, Chen CM, Lee YC, Chu ST, Khoo KH. Glycomics and proteomics analyses of mouse uterine luminal fluid revealed a predominance of Lewis Y and X epitopes on specific protein carriers. Mol Cell Proteomics 2009;8:325-342.
85. Ostermeier GC, Miller D, Huntriss JD, Diamond MP, Krawetz SA. Reproductive biology: delivering spermatozoan RNA to the oocyte. Nature 2004;429:154.
86. Amaral A, Castillo J, Ramalho-Santos J, Oliva R. The combined human sperm proteome: cellular pathways and implications for basic and clinical science. Hum Reprod Update 2014;20:40-62.
88. Seidah NG, Day R, Hamelin J, Gaspar A, Collard MW, Chretien M. Testicular expression of PC4 in the rat: molecular diversity of a novel germ cell-specific Kex2/subtilisin-like proprotein convertase. Mol Endocrinol 1992;6:1559-1570.
89. Gyamera-Acheampong C, Mbikay M. Proprotein convertase subtilisin/kexin type 4 in mammalian fertility: a review. Hum Reprod Update 2009;15:237-247.
90. Kurokawa M, Sato K, Wu H, He C, Malcuit C, Black SJ, et al. Functional, biochemical, and chromatographic characterization of the complete [Ca2+]i oscillation-inducing activity of porcine sperm. Dev Biol 2005;285:376-392.
91. Yoshida N, Amanai M, Fukui T, Kajikawa E, Brahmajosyula M, Iwahori A, et al. Broad, ectopic expression of the sperm protein PLCZ1 induces parthenogenesis and ovarian tumours in mice. Development 2007;134:3941-3952.
92. Hachen A, Jewgenow K, Braun BC. Sequence analysis of feline oviductin and its expression during the estrous cycle in the domestic cat (Felis catus). Theriogenology 2012;77:539-549.
93. Nancarrow CD, Hill JL. Oviduct proteins in fertilization and early embryo development. J Reprod Fertil Suppl 1995;49:3-13.
94. Nawale RB, Mourya VK, Bhise SB. Non-enzymatic glycation of proteins: a cause for complications in diabetes. Indian J Biochem Biophys 2006;43:337-344.
95. Bousova I, Vukasovic D, Juretic D, Palicka V, Drsata J. Enzyme activity and AGE formation in a model of AST glycoxidation by D-fructose in vitro. Acta Pharm 2005;55:107-114.
96. Bunn HF, Gabbay KH, Gallop PM. The glycosylation of hemoglobin: relevance to diabetes mellitus. Science 1978;200:21-27.
97. Bunn HF. Nonenzymatic glycosylation of protein: relevance to diabetes. Am J Med 1981;70:325-330.
98. Takeuchi M, Iwaki M, Takino J, Shirai H, Kawakami M, Bucala R, et al. Immunological detection of fructose-derived advanced glycation end-products. Lab Invest 2010;90:1117-1127.
99. Cheon YP, Kim CH, Kang BM, et al. Spermatozoa characteristics of streptozotocin-induced diabetic wistar rat: acrosome reaction and spermatozoa concentration. Korean J Fertil Steril 1999;26:89-96.
100. Eibl N, Spatz M, Fischer GF, Mayr WR, Samstag A, Wolf HM, et al. Impaired primary immune response in type-1 diabetes: results from a controlled vaccination study. Clin Immunol 2002;103:249-259.