In mammalian species, females are born with a number of oocytes exceeding what they release via ovulation. In humans, an average girl is born with over a thousand times more oocytes than she will ovulate in her lifetime. The reason for having such an excessive number of oocytes in a neonatal female ovary is currently unknown. However, it is well established that the oocyte number decreases throughout the entire lifetime until the ovary loses them all. In this review, data published in the past 80 years were used to assess the current knowledge regarding the changing number of oocytes in humans and mice, as well as the reported factors that contribute to the decline of oocyte numbers. Briefly, a collective estimation indicates that an average girl is born with approximately 600,000 oocytes, which is 2,000 times more than the number of oocytes that she will ovulate in her lifetime. The oocyte number begins to decrease immediately after birth and is reduced to half of the initial number by puberty and almost zero by age 50 years. Multiple factors that are either intrinsic or extrinsic to the ovary contribute to the decline of the oocyte number. The inflammation caused by the ovulatory luteinizing hormone surge is discussed as a potential contributing factor to the decline of the oocyte pool during the reproductive lifespan.

Keywords: Atretic follicle; Folliculogenesis; Germ cells; Inflammation; Oocytes; Reproductive health
No method currently exists for precisely assessing the oocyte pool. Instead, a few methods are used as clinical assessments of the oocyte pool, including measurements of blood levels of anti-Müllerian hormone (AMH) alone or together with follicle-stimulating hormone, the levels of which are affected by the number of follicles in the ovary and the amount of estradiol synthesized by the follicles, respectively [19,20]. AMH is a peptide hormone produced by the granulosa cells of the primary and secondary follicles and released into the bloodstream. Therefore, the blood level of AMH is used as a proxy of the size of the oocyte pool, and this method has been adopted by most in vitro fertilization (IVF) clinics to assess the size of their patients’ oocyte pool. Low or high blood AMH levels are used as a clinical marker to predict whether ovulation can be induced in an IVF patient or to determine how many oocytes can be retrieved upon inducing ovulation. However, neither AMH nor follicle-stimulating hormone levels are reflective of the actual size of the oocyte pool. Indeed, these levels do not change for the entire fertile lifespan even though the oocyte pool continues to decrease in size; they only begin to change when the oocyte pool becomes so small that not enough primordial follicles can be recruited to the growth phases. Interestingly, in a survey performed with 796 infertility clinics asking which test or factor best predicts fertility, 80% of respondents stated that age was the best predictor [21]. Why age? The oocyte pool decreases nonstop even when a woman’s fertility is at its peak or she is in her teens or 20s. As of 2021, no consensus exists regarding the cause(s) of the continued decline of the oocyte pool, but it is believed to be a multifactorial phenomenon. In the following sections, we summarize reported causes of the decline that are backed by experimental or observational data. Additionally, the hypothesis that ovulatory inflammation is a contributing factor to the decline of the oocyte pool will be discussed.

Contributing factors to the decline of the oocyte pool

The peak size of the oocyte pool is established during fetal development, specifically during the transitional period of mid-to-late gestation [22]. Upon reaching the peak, the pool begins to decrease, primarily via a process called oocyte attrition, throughout the rest of the gestational period [23,24]. After birth, the oocyte pool continues to decrease due to a variety of factors including, but not limited to, follicular atresia, meiotic errors, ovulation, environmental toxicants, medical drugs, and possibly some other factors that are yet to be discovered (Figure 2).

1. Perinatal oocyte loss

Immediately prior to or after birth, the ovary loses oocytes via o-
cyte attrition, which is mediated by immune cells infiltrating the fetal ovaries [25] or apoptosis triggered by DNA breaks [26,27]. Furthermore, autophagy, ferroptosis, and necrosis are also known to cause oocyte demise. Autophagy is a cell recycling pathway that involves the fusion of organelles with lysosomes for degradation [28-30]. Ferroptosis is a type of programmed cell death involving intracellular iron and oxidative phospholipids [22,31]. Necrosis is an inflammatory cell death process that results in swelling and eventually cell rupture [32].

2. Follicular atresia

After birth, a subset of dormant primordial follicles is recruited into a growth phase, which continues throughout the entire reproductive lifespan. Some of them grow and develop into preantral follicles, and eventually release oocytes via ovulation. However, the majority of the recruited follicles die during the growth phase; they eventually degenerate and are removed from the ovary. This phenomenon is called follicular atresia and is often triggered by the death of a granulosa cell in a follicle [22], eventually leading to the death of most granulosa cells and oocytes. Decreased estrogen production in the follicle or a milieu with increased androgen levels is a known cause of the initial death of granulosa cells [33-36]. In addition, erroneous signaling between the oocyte and granulosa cells also causes mis-regulation in the meiotic arrest of oocytes and follicular atresia [37-40].

3. Environmental toxicants

Humans are constantly exposed to environmental toxicants via inhalation, ingestion, or contact. Recent studies have shown that an alarming number of environmental toxicants can directly or indirectly damage oocytes. For example, oocytes in an ovary that is exposed to cadmium die due to an increased level of reactive oxygen species (ROS), subsequent DNA damage, and mitochondrial disruption in the oocytes [41]. Di(n-butyl) phthalate, an industrial plasticizer and stabilizer, kills oocytes by activating apoptosis pathways upon exposure in animals [42]. Nonylphenol, a commonly used industrial material similar to laundry detergents, has been shown to alter the expression of more than 800 genes in mouse oocytes, increase ROS levels, and eventually eliminate oocytes [43]. Further, a variety of endocrine-disrupting chemicals bind to steroid receptors (e.g., estrogen or progesterone receptors), synergistically disrupt hormonal balance, and directly or indirectly harm oocytes [44-46]. Unlike oocyte attrition and follicular atresia, which are mostly triggered by internal factors, environmental toxicants are from external sources and therefore preventable to some degree.

4. Medical treatments

Multiple drugs are used to cull harmful cells, particularly in cancer patients. These drugs primarily target cell-cycle regulators, making the ovary a vulnerable organ to such medical treatment. When given to a patient, these drugs inevitably impact cells in the ovary because a substantial proportion of ovarian cells undergo cell proliferation (granulosa cells in follicles at various stages) and meiosis (oocytes). Indeed, it is well known that young female cancer patients who receive chemotherapy suffer from premature ovarian insufficiency (POI) [47,48]. Chemotherapeutic drugs such as cyclophosphamide, cisplatin, vincristine, and doxorubicin are all reported to induce POI [49-51]. In addition to targeting cell cycle regulators, some chemotherapeutic drugs “burn out” the oocyte pool. For example, cyclophosphamide stimulates follicle activation in oocytes and granulosa
cells, thereby pushing an excessive number of primordial follicles into a growth phase and decreasing the oocyte pool [47]. Doxorubicin triggers the DNA-damaging TAp63α-Cleaved-CASP3 pathway to induce apoptosis in the oocytes of primordial follicles [48]. Radiation therapy is also toxic to oocytes. It increases ROS production in patients, which induces DNA damage either directly or via lipid peroxidation or by increasing the expression of a pro-apoptotic protein, p53 upregulated modulator of apoptosis, in oocytes or granulosa cells [52]. Cryopreservation of oocytes or ovarian tissues has been used to persevere oocytes for later use before chemotherapy [50]. Further, antioxidants such as melatonin are now used to quench ROS before radiation therapy [53].

5. Meiotic errors
Meiotic errors can be caused by environmental toxicants or medical treatments. However, they can also happen by chance during normal oogenesis. Typical meiotic mistakes include failure to repair DNA breaks and defective synopsis [26], abnormal spindle assembly [54], and further chromosome nondisjunction [55]. Surprisingly, 20%–25% of human oocytes obtained in IVF clinics showed aneuploidy [56], and the ratio increases as women become older [57]. To control the quality of the overall oocyte pool, certain meiotic checkpoint mechanisms sacrifice abnormal oocytes and decrease the total oocyte number [54,57]. However, these checkpoints are less stringent in females than in males [57]. Thus, some oocytes with meiotic errors can still be fertilized, leading to chromosome-related diseases/syndromes such as Down syndrome in newborns [58,59]. Nonetheless, oocytes can find a way to efficiently repair DNA double-strand breaks and protect the genetic integrity of offspring if apoptosis is inhibited [60,61].

Ovulatory inflammation: a contributing factor to the decline of the oocyte pool?

Ovulation is the process of releasing oocyte(s) from the ovary. It is triggered by a preovulatory surge of luteinizing hormone (LH) and recurs every reproductive cycle [62]. In the entire reproductive lifespan, a woman releases only 300–400 oocytes [63], a negligible subset of oocytes compared to the number of oocytes a female is born with. In the previous section, a few well-established causes of oocyte losses were reviewed. In this section, we will discuss another cause that may trigger oocyte loss: the acute inflammation that the ovary experiences at the time of ovulation. When a tissue undergoes acute inflammation, leukocytes quickly infiltrate the tissue and display a series of defensive behaviors with the aim of destroying foreign invaders, such as infectious microorganisms or harmful substances. However, these defensive actions inevitably damage the tissue itself. Overwhelming evidence indicates that the ovary experiences acute inflammation when it undergoes a cascade of ovulatory processes, suggesting that a similar tissue-damaging event may happen in the ovary at the time of ovulation. Therefore, the ovarian cells, including primordial germ cells, may be damaged and eventually removed from the ovary at each ovulation, accounting for a significant portion of oocyte loss during the reproductive lifespan. Herein, we will discuss this possibility.

1. Ovulation is accompanied by acute inflammation
The idea that ovulation is an inflammatory process was originally introduced in the early 1980s by Espey [64], who presented a striking similarity between a general inflammatory process and the events that take place at the time of ovulation. Since then, this idea has gained popularity through extensive observational and experimental data that were recently reviewed by Duffy et al. [65]. The most obvious evidence that the ovary undergoes acute inflammation is that the number and density of proinflammatory leukocytes increase in the ovary immediately after the LH surge [66-69], like any other tissue that undergoes acute inflammation. The LH surge-induced leukocyte infiltration is mediated by pro-inflammatory cytokines and ROS that are either released by ovarian cells or resident leukocytes [64,70-74]. For example, one of the pro-inflammatory cytokines, interleukin 1 beta (IL-1β), is expressed and secreted from theca cells, granulosa cells, and leukocytes [75,76]. IL-1β subsequently induces the expression of prostaglandin synthase 2 (PTGS2) in granulosa cells [76]. PTGS2 is a rate-limiting enzyme in the synthetic pathway of prostaglandin E2 (PGE2) [77,78], a pro-inflammatory agent that impacts angiogenesis, blood flow, immune cell function, and tissue remodeling in the ovary [65]. Importantly, locally produced PGE2 stimulates the recruitment of a variety of proinflammatory cells to the ovary in a short time [79], as it does in other inflammatory sites [80], creating acute inflammation in the ovary.

2. Ovulatory inflammation and tissue damage
Acute inflammation causes oxidative stress and DNA damage in the resident cells, and this occurs in the ovary when it undergoes ovulatory processes [81-84]. As the ovary repeats ovulation, the ovarian tissue, including oocytes, may also be damaged by proinflammatory cells via engulfment and the proteases that the immune cells release [85]. Importantly, inflammatory cells and their secretions are primarily localized and execute their inflammatory actions around the blood vessels in the ovulatory follicles and medullary region. However, primordial follicles are sequestered in the cortex, the least vascularized region in the ovary. Therefore, presumably, the primordial follicles localized close to medulla, but not those far away from
the inflammatory sites and in the cortex, may be damaged and lost at the time of ovulation (Figure 3). In support of the suggested role of inflammatory cells in decreasing the oocyte pool, recent studies have pointed out that a pathological level of ovarian inflammation induces POI, which is caused by an accelerated decline of the oocyte pool \[86-89\]. For instance, women with chronic systemic inflammation caused by an autoimmune disease (e.g., Addison disease) or by pathologically elevated production of inflammatory cytokines have a significantly higher likelihood of developing POI \[87,90-93\]. In addition to its direct impact on oocytes or follicles, inflammation may indirectly accelerate the decline of the oocyte pool by inducing fibrosis (deposition of connective tissue), which is generally observed in aged ovaries \[94,95\]. Indeed, fibrosis is a part of the natural aging process.

Figure 3. Ovulatory inflammation and the oocyte pool. The luteinizing hormone (LH) surge stimulates theca and mural granulosa cells (GCs) to produce prostaglandin E2 (PGE2) and interleukin 1 beta (IL-1β), which then trigger them and resident immune cells to produce inflammatory cytokines. These cytokines increase pro-inflammatory immune cells in the ovary by facilitating their infiltration into the ovarian tissue from the circulating bloodstream, causing localized inflammatory situation in the ovary. As a result, germ cells and follicles may get damaged directly by the proinflammatory cells or indirectly via reactive oxygen species (ROS) produced by the immune cells or ovarian cells. The repeated ovulatory inflammation itself and physical tearing of the ovarian surface epithelium (OSE) result in both the loss of germ cells and neoplastic transformation. NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; GR, glucocorticoid receptor; PGR, progesterone receptor; NFKBIA, NF-κB inhibitor alpha.
process in the ovary and likely contributes to the decline of the oocyte pool, as fibrous tissues may interfere with normal ovarian dynamics, as well as impair follicular survival, recruitment, and growth (Figure 3).

3. Polycystic ovarian syndrome, contraception, and the oocyte pool

If it is true that ovulatory inflammation accounts for the loss of a significant portion of oocytes, and therefore is a contributing factor to the decline of oocyte pool, one can predict that the oocyte pool decreases more slowly and therefore the reproductive lifespan would be longer in women whose ovulation frequency or number is less than that of average women. Women with polycystic ovarian syndrome (PCOS) do not ovulate at all or have a much lower ovulation frequency than those without the syndrome. As a result, women with PCOS experience a significantly lower level of ovulatory inflammation. Indeed, women with PCOS have a larger ovarian pool and exhibit a slower rate of follicular atresia than infertile eumenorrheic women [96-98]. Another example of less ovulation can be seen in women who take contraceptive pills. Unfortunately, there is no direct evidence that taking contraceptive pills may delay the oocyte-pool decline. However, it is well established that women who take contraceptive pills have a lower probability of developing ovarian cancer than those who do not [99-101], likely because the ovarian tissues have less exposure to ovulatory inflammation.

In summary, the literature clearly shows that the causes of the continuous decline of the oocyte pool throughout the entire reproductive lifespan are multifactorial. Some factors are intrinsic to the ovary (oocyte attrition, meiotic errors, follicular atresia) and unavoidable, while others are external and preventable (environmental toxicants, drugs). In addition, here, we discuss an additional potential intrinsic factor: ovulatory inflammation. The question remains of why females are born with excess oocytes. Might it be to ensure that they maintain fertility for a sufficient period when the ovary continues to lose oocytes due to the aforementioned reasons? Males are born without sperm in their gonads. Instead, their gonads contain germ cell stem cells, from which sperms are continuously produced for a few decades in humans, with the stem cells serving a reservoir for continued production of the male germ cells. The female gonads, however, do not contain germ cell stem cells; instead, ovarian egg production has to rely on the finite number of oocytes with which they are born. Therefore, having an excess number of oocytes at the time of birth may be a mechanism to ensure egg production for an extended period and long-term fertility in humans.

Conflict of interest

No potential conflict of interest relevant to this article was reported.

Acknowledgments

This study was supported by NIH HD094296 (CK), R00 HD082375 (HQ), and NSF SBIR 2052603 (CP).

Author contributions

Conceptualization: CMK. Data curation: CJP, JEO, JF, YMC. Formal analysis: CJP, HQ, CMK. Methodology: JEO, YMC, CMK. Project administration: HQ, CMK. Visualization: CJP, JF, JO, YC. Writing–original draft: all authors. Writing–review & editing: CJP, HQ, CMK.

ORCID

Chan Jin Park https://orcid.org/0000-0001-9008-1964
Ji-Eun Oh https://orcid.org/0000-0003-3352-9608
Jianan Feng https://orcid.org/0000-0001-6987-1187
Yoon Min Cho https://orcid.org/0000-0003-4278-8775
Huanyu Qiao https://orcid.org/0000-0003-0966-8077
CheMyong Ko https://orcid.org/0000-0002-0963-3731

References

6. Gougeon A, Ecochard R, Thalabard JC. Age-related changes of the population of human ovarian follicles: increase in the disappearance rate of non-growing and early-growing follicles in aging...
...ing Sma- and Mad-related protein 4. Biol Reprod 2014;91:146.
maki K, et al. Regulation mechanism of selective atresia in porcine
follicles: regulation of granulosa cell apoptosis during atresia. J
Bidirectional communication between oocytes and ovarian follic-
ular somatic cells is required for meiotic arrest of mammalian oo-
38. Alam MH, Miyano T. Interaction between growing oocytes and
39. Alam MH, Lee J, Miyano T. GDF9 and BMP15 induce development
of antrum-like structures by bovine granulosa cells without oo-
40. Matsuda F, Inoue N, Manabe N, Ohkura S. Follicular growth and
atresia in mammalian ovaries: regulation by survival and death of
toxicity of acute Cd exposure in mouse: resulting in oocyte de-
fects and decreased female fertility. Toxicol Appl Pharmacol
2019;379:114684.
phthalate exposure impairs meiotic competence and develop-
43. Xu Y, Sun MH, Xu Y, Ju QJ, Pan MH, Pan ZN, et al. Nonylphenol ex-
posure affects mouse oocyte quality by inducing spindle defects
and mitochondria dysfunction. Environ Pollut 2020;266(Pt
1):114967.
44. Goodman RL, Bittman EL, Foster DL, Karsch FJ. The endocrine ba-
sis of the synergistic suppression of luteinizing hormone by estra-
45. Bretveld RW, Thomas CM, Scheepers PT, Zielhuis GA, Roeleveld N.
Pesticide exposure: the hormonal function of the female repro-
46. Farr SL, Cooper GS, Cai J, Savitz DA, Sandler DP. Pesticide use and
menstrual cycle characteristics among premenopausal women in
the Agricultural Health Study. Am J Epidemiol 2004;160:1194–
204.
47. Kalich-Philosoph L, Roness H, Carmely A, Fishel-Bartal M, Li-
gumsky H, Paglin S, et al. Cyclophosphamide triggers follicle acti-
vation and “burnout”; AS101 prevents follicle loss and preserves
al. Doxorubicin obliterates mouse ovarian reserve through both
primordial follicle atresia and overactivation. Toxicol Appl Phar-
camol 2019;381:114714.
do chemotherapeutic agents damage the ovary? Hum Reprod
50. Spears N, Lopes F, Stefansdottir A, Rossi V, De Felici M, Anderson
RA, et al. Ovarian damage from chemotherapy and current ap-
51. Winship AL, Carpenter M, Griffiths M, Hutt KJ. Vincristine chem-
otherapy induces atresia of growing ovarian follicles in mice. Toxi-
52. Mishra B, Ripperdan R, Ortiz L, Luderer U. Very low doses of heavy
oxygen ion radiation induce premature ovarian failure. Reproduc-
tion 2017;154:123–33.
53. Malott KF, Luderer U. Toxicant effects on mammalian oocyte mito-
54. Lane S, Kauppi L. Meiotic spindle assembly checkpoint and aneu-
55. Fragouli E, Wells D, Delhanty JD. Chromosome abnormalities in
56. Hassold T, Hunt P. To err (meiotically) is human: the genesis of hu-
57. Nagaoka SI, Hassold TJ, Hunt PA. Human aneuploidy: mechanisms
and new insights into an age-old problem. Nat Rev Genet
Epidemiology of Down syndrome: new insight into the multi-
dimensional interactions among genetic and environmental risk
59. Zheng CJ, Byers B. Oocyte selection: a new model for the mater-
6.
60. Bolcun-Filas E, Rinaldi BD, White ME, Schimenti JC. Reversal of fe-
nale infertility by Chk2 ablation reveals the oocyte DNA damage
61. Stringer JM, Winship A, Zerafa N, Wakefield M, Hutt K. Oocytes can
efficiently repair DNA double-strand breaks to restore genetic in-
tegrity and protect offspring health. Proc Natl Acad Sci U S A
62. Tsafiri A, Reich R. Molecular aspects of mammalian ovulation. Exp
63. Mastroianni L, Coutifaris C. The FIGO manual of human reproduc-
tion. Vol 1. Reproductive physiology. Park Ridge: Parthenon Pub-
lishing; 1990.
64. Espey LL. Ovulation as an inflammatory reaction: a hypothesis.
65. Duffy DM, Ko C, Jo M, Brannstrom M, Curry TE. Ovulation: parallels

https://doi.org/10.5653/cerm.2021.04917
67. Fleming JS, Beaugie CR, Chenevix-Trench G, Tan OL. Incen-
sant ovulation, inflammation and epithelial ovarian carcinogene-
Periovulatory leukocyte infiltration in the rat ovary. Endocrinolo-
69. Yamada M, Gentry PA. Hemostatic profile of bovine ovarian follic-
70. Shukovski L, Tsafirri A. The involvement of nitric oxide in the ovi-
Effects of nitric oxide on ovulation and ovarian steroidogenesis
and prostaglandin production in the rabbit. Endocrinology 1997;
72. Jablonka-Shariff A, Olson LM. The role of nitric oxide in oocyte
meiotic maturation and ovulation: meiotic abnormalities of en-
dothelial nitric oxide synthase knock-out mouse oocytes. Endo-
73. Ness RB, Cottreau C. Possible role of ovarian epithelial inflamma-
74. Kodaman PH, Behrman HR. Endocrine-regulated and protein ki-
nase C-dependent generation of superoxide by rat preovulatory
Proges-
terone receptor serves the ovary as a trigger of ovulation and a
76. Gerard N, Caillaud M, Martorati A, Goudet G, Lalmanach AC. The
interleukin-1 system and female reproduction. J Endocrinol
2004;180:203–12.
77. Needleman P, Turk J, Jakschik BA, Morrison AR, Lefkowith JB. Ara-
78. DeWitt DL. Prostaglandin endoperoxide synthase: regulation of
79. Jabbour HN, Sales KJ, Catalano RD, Norman JE. Inflammatory
pathways in female reproductive health and disease. Reproduction
80. Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arte-
81. Murdoch WJ, Townsend RS, McDonnell AC. Ovulation-induced
DNA damage in ovarian surface epithelial cells of ewes: prospec-
tive regulatory mechanisms of repair/survival and apoptosis. Biol
82. Savant SS, Sriramkumar S, O’Hagan HM. The role of inflamma-
tion and inflammatory mediators in the development, progression,
metastasis, and chemoresistance of epithelial ovarian cancer.
83. Jia D, Nagaoka Y, Katsumata M, Orsulic S. Inflammation is a key
84. Yang-Hartwich Y, Gurrea-Soteras M, Sumi N, Joo WD, Holmberg
JC, Craveiro V, et al. Ovulation and extra-ovarian origin of ovarian
85. Spanel-Borowski K. Ovulation as danger signaling event of innate
86. Lliberos C, Liew SH, Zareie P, La Gruta NL, Mansell A, Hutt K. Eval-
uation of inflammation and follicle depletion during ovarian age-
mechanism affecting premature ovarian insufficiency. J Immunol
88. Navarro-Pando JM, Alcocer-Gomez E, Castejon-Vega B, Navar-
ro-Villaran E, Condes-Hervas M, Mundi-Roldan M, et al. Inhibition
of the NLRP3 inflammasome prevents ovarian aging. Sci Adv
2021;7:eabc7409.
89. Yang L, Chen Y, Liu Y, Xing Y, Miao C, Zhao Y, et al. The role of oxida-
tive stress and natural antioxidants in ovarian aging. Front Phar-
macol 2021;11:617843.
90. Sammaritano LR. Menopause in patients with autoimmune dis-
Premature ovarian failure in patients with autoimmune Addison’s
92. Coulam CB, Stern JJ. Immunology of ovarian failure. Am J Reprod
93. Naz RK, Thurston D, Santoro N. Circulating tumor necrosis factor
(TNF)-alpha in normally cycling women and patients with prema-
ture ovarian failure and polycystic ovaries. Am J Reprod Immunol
94. Rybinski B, Franco-Barraza J, Cukierman E. The wound healing,
chronic fibrosis, and cancer progression triad. Physiol Genomics
2014;46:223–44.
95. Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic
96. Mellembakken JR, Berga SL, Kilen M, Tanbo TG, Abyholm T, Fe-
dorcsak P. Sustained fertility from 22 to 41 years of age in women
with polycystic ovarian syndrome. Hum Reprod 2011;26:2499–
504.
al. Prolonged survival in culture of preantral follicles from polycys-
98. Wiser A, Shalom-Paz E, Hyman JH, Sokal-Arnon T, Bantan N, Holzer
H, et al. Age-related normogram for antral follicle count in wom-
en with polycystic ovary syndrome. Reprod Biomed Online 2013;
99. Iversen L, Fielding S, Lidegaard O, Morch LS, Skovlund CW, Han-
naford PC. Association between contemporary hormonal contra-
ception and ovarian cancer in women of reproductive age in
Denmark: prospective, nationwide cohort study. BMJ 2018;362:
k3609.
100. Auphan N, DiDonato JA, Rosette C, Helmberg A, Karin M. Immu-
nosuppression by glucocorticoids: inhibition of NF-kappa B ac-
tivity through induction of I kappa B synthesis. Science 1995;
270:286–90.
M. Leptin modulates the glucocorticoid-induced ovarian ste-